引用本文:王用良,陈彰兵,严启团,陈理,吴新阳,韩中喜. 天然气可再生脱汞用载银分子筛评价及应用[J]. 石油与天然气化工, 2021, 50(4): 1-7.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1288次   下载 622 本文二维码信息
码上扫一扫!
分享到: 微信 更多
天然气可再生脱汞用载银分子筛评价及应用
王用良1,陈彰兵1,严启团2,陈理3,吴新阳1,韩中喜2
1.中国石油工程建设有限公司西南分公司 ;2.中国石油勘探开发研究院廊坊分院 ;3.四川省达科特能源科技股份有限公司
摘要:
为了推动天然气脱汞技术的发展,降低脱汞成本,掌握可再生天然气脱汞工艺技术,有必要开展可再生天然气脱汞工艺的研究和应用。在脱汞剂可再生载银分子筛研发的基础上,通过开展脱汞剂再生温度、再生重复性、原料气中汞质量浓度及含液条件的适应性、动态汞吸附能力等性能的实验室及现场装置应用评价,获取了载银分子筛的相关性能参数。载银分子筛脱汞剂经反复高温再生后脱汞能力无明显下降,再生性好,满足工程实际应用条件;再生温度越高,载银分子筛Ag-B再生效果越好,最低再生温度为280 ℃;脱汞深度不受原料气中汞含量的影响,不同汞含量的原料气经载银分子筛吸附处理后,产品气中汞质量浓度均能达到0.05 μg/m3以下;载银分子筛Ag-B的动态汞吸附能力约为0.36 mg汞/g脱汞剂。脱汞塔空塔气速过大或过小均不利于脱汞吸附,应维持在一定范围内,在10 MPa的压力下,最佳空塔气速范围为1.5~2.5 m/min;原料气含液会导致载银分子筛脱汞能力明显降低,湿气条件下脱汞能力约为干气条件下的63%。在实际工程设计中,应在载银分子筛脱汞前进行天然气脱水处理。相关工程经验及关键参数的获取,可为其他可再生天然气脱汞装置的设计和运行提供工程借鉴。 
关键词:  载银分子筛  脱汞  天然气  可再生
DOI:10.3969/j.issn.1007-3426.2021.04.001
分类号:
基金项目:中国石油天然气股份有限公司“含汞气田湿气脱汞技术试验研究”(KY2015-05)
Evaluation and application of silver-loaded molecular sieve for natural gas renewable mercury removal
Wang Yongliang1, Chen Zhangbing1, Yan Qituan2, Chen Li3, Wu Xinyang1, Han Zhongxi2
1. China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu, Sichuan, China;2. Langfang Branch of Research Institute of Petroleum Exploration Development, PetroChina, Langfang, Hebei, China;3.Sichuan DKT Energy Technology Co., Ltd., Chengdu, Sichuan, China
Abstract:
In order to promote the development of mercury removal technology of natural gas, reduce the cost of mercury removal and master the technology of renewable mercury removal process for natural gas, it is necessary to develop the study and industrial application of renewable mercury removal process for natural gas. Based on the research and development of renewable silver-loaded molecular sieve, the relevant performance parameters of the silver-loaded molecular sieve were obtained through the application evaluation of the regenerated temperature, regenerated repeatability, the adaptability of mercury mass concentration and liquid-containing condition of feed gas, dynamic mercury adsorption capacity and other properties of silver-loaded molecular sieve in laboratory and field equipment. After repeated regeneration at high temperature, the mercury-removing ability of silver-loaded molecular sieve had no obvious decrease, and the reproducibility was good, which could meet the engineering application conditions. The higher the regeneration temperature was, the better the silver-loaded molecular Ag-B regeneration effect was. The lowest regeneration temperature was 280 ℃. The depth of mercury removal was not affected by the mass concentration of mercury in the feed gas. The mercury mass concentration in the product gas was below 0.05 μg/m3 even if the feed gas was adsorbed by the silver-loaded molecular sieve with different mercury concentrations. The dynamic mercury adsorption capacity of silver-loaded molecular Ag-B was 0.36 mg Hg per 1 g mercury-removing agent. Too large or too small air velocity of the mercury removal tower was not conducive to the adsorption of mercury removal, so it should be maintained within a certain range. The optimal air velocity of empty tower under 10 MPa pressure was 1.5-2.5 m/min. The liquid in feed gas would lead to significant decrease of mercury removal capacity of silver-loaded molecular sieve. Under wet condition, the mercury removal capacity of silver-loaded molecular sieve was about 63% of that under dry gas condition. In practical engineering design, natural gas dehydration should be carried out before mercury removal by silver-loaded molecular sieve. The acquisition of relevant engineering experience and key parameters can provide engineering references for design and operation of other renewable mercury removal facility.
Key words:  silver-loaded molecular sieve  mercury removal  natural gas  renewable