引用本文:郭朋皞,宋光春,李玉星,王武昌,胡皓晨,AmadeuK.Sum. 气主导盲管内水合物沉积特性实验研究[J]. 石油与天然气化工, 2022, 51(2): 53-58.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 683次   下载 357 本文二维码信息
码上扫一扫!
分享到: 微信 更多
气主导盲管内水合物沉积特性实验研究
郭朋皞1,宋光春1,李玉星1,王武昌1,胡皓晨1,AmadeuK.Sum2
1.山东省油气储运安全省级重点实验室·中国石油大学(华东) ;2.科罗拉多矿业学院
摘要:
目的 为了研究气主导盲管内水合物的沉积特性,使用专门设计的气主导盲管实验装置开展了一系列水合物管壁沉积实验。方法 实验中,竖直管内的气体在密度差的作用下产生自然对流,进而携带高温水蒸气在竖直管内运移并不断在低温的竖直管壁上冷凝,冷凝水最终与气体反应形成管壁水合物沉积层。结果 实验中竖直管内存在水合物沉积层生长最快、厚度最大且最容易形成堵塞的危险位置,管壁水合物沉积层存在厚度和表观体积减小的现象。根据水合物在形成过程中传质和传热条件的不同,竖直管内管壁水合物沉积层从上到下存在6种不同形态。结论 实验过程中,管壁水合物沉积层的生长速率会逐渐降低,这主要是由管壁水合物沉积层具有的“隔热”作用导致的。该研究结果可为深水流动安全保障盲管水合物防治技术的发展提供理论支撑。 
关键词:  水合物  气主导  盲管  沉积
DOI:10.3969/j.issn.1007-3426.2022.02.009
分类号:
基金项目:国家自然科学基金项目“水合物管壁膜生长沉积层的形成监测、动态演化及力学稳定性研究”(52104070);“深水蜡晶与水合物多相混输管道固相沉积与安全输运机制”(U19B2012);中国博士后科学基金面上项目“沥青质对深水油气输送管道中水合物形成及流动特性的影响机制研究”(2021M693505);中央高校基本科研业务费专项资金“沥青质存在条件下深水油气输送管道中水合物的形成及流动特性研究”(20CX06098A);青岛市博士后应用研究项目“沥青质存在条件下深水油气输送管道水合物的形成及流动特性研究”(qdyy20200058)
Experimental investigation on the characteristics of hydrate deposition in gas-dominated deadlegs
Guo Penghao1, Song Guangchun1, Li Yuxing1, Wang Wuchang1, Hu Haochen1, Amadeu K. Sum2
1. Shandong Key Laboratory of Oil-Gas Storage and Transportation Safety, China University of Petroleum, Qingdao, Shandong, China;2. Colorado School of Mines, Golden, Colorado, USA
Abstract:
Objective In order to investigate the characteristics of hydrate deposition in gas-dominated deadlegs, a series of experiments on hydrate deposition were conducted in a specially designed gas-dominated deadleg setup. Methods During the experiments, natural convection happened on and the gas in the deadleg under the action of density difference, further induced the transportation of the high-temperature vapour inside the deadleg and the condensation of the vapour on the cold pipe wall. As a result, the condensed water eventually reacted with the gas and formed hydrate deposits on the pipe wall. Results In experiments, there existed a dangerous position in the deadleg where the hydrate deposits grew fastest, had the largest thickness and was most likely to form blockage. Moreover, the thickness and apparent volume of the hydrate deposits gradually decreased in the late stage of the experiments. According to the different mass and heat transfer conditions during the formation of hydrates, there existed six different hydrate deposit morphologies in the deadleg from top to bottom. Conclusion sDuring the experiment, the growth rate of the hydrate deposits gradually decreased, which was mainly caused by the “insulation effect” of the hydrate deposits. The conclusions of this work can provide a guidance for the development of hydrate management strategy in deepwater deadlegs.
Key words:  hydrate  gas-dominated  deadleg  deposition