引用本文:石阳,许可,翁定为,卢拥军,秦森,戴姗姗,等. 基于分子动力学模拟的改性部分水解聚丙烯酰胺耐温机理[J]. 石油与天然气化工, 2023, 52(3): 76-80, 86.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1183次   下载 408 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于分子动力学模拟的改性部分水解聚丙烯酰胺耐温机理
石阳1,许可1,翁定为1,卢拥军1,秦森2,戴姗姗2,3,李阳1,兰健2
1.中国石油勘探开发研究院;2.西南石油大学化学化工学院;3.油田化学教育部工程研究中心
摘要:
目的 为了探明不同功能单体如何影响部分水解聚丙烯酰胺的耐温性能。方法 设计了3种不同类型的功能单体改性部分水解聚丙烯酰胺,采用分子动力学研究其在高温下的分子链舒展程度、体系小分子扩散状态以及与水形成的氢键强度。结果 阴离子单体AMPS因其含有磺酸基团,与水分子形成的氢键更强,抑制聚合物链在高温下的“去水化”,使聚合物的耐温性能提升;非离子单体NVP具有环状刚性结构,提升聚合物链的抗卷曲能力,避免了聚合物链的过度卷曲,可增强聚合物的耐温性能;阳离子单体DADMAC在水中易与羧酸基团相互吸引,使得聚合物分子链易于卷曲,降低了聚合物的耐温性能。结论 能与水形成更强氢键强度的基团以及具有抗卷曲能力的环状结构的单体,更利于提升部分水解聚丙烯酰胺的耐温性能。 
关键词:  分子模拟  耐温  氢键  回转半径  扩散系数  径向分布函数 
DOI:10.3969/j.issn.1007-3426.2023.03.013
分类号:
基金项目:国家自然科学基金“超深层新型抗高温聚合物冻胶压裂液及耐温减阻机制”(52120105007);国家科技重大专项课题“储层改造关键流体研发”(2017ZX05023003);中石油科技管理部项目“超高温清洁压裂液与变黏功能滑溜水研究”(2020B-4120)
Temperature resistance mechanism of modified partially hydrolyzed polyacrylamide based on molecular dynamics simulation
Shi Yang1, Xu Ke1, Weng Dingwei1, Lu Yongjun1, Qin Sen2, Dai Shanshan2,3, Li Yang1, Lan Jian2
1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing, China;2. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China;3. Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu, Sichuan, China
Abstract:
Objective This study is aiming to explore how the different functional monomers affect the temperature resistance performance of partially hydrolyzed polyacrylamide. Methods Three kinds of partially hydrolyzed polyacrylamide modified by different functional monomers were designed. The stretching degree of polymer molecular chains, the diffusion state of small molecules and the strength of hydrogen bonds between polymer with water were investigated at high temperature by molecular dynamics simulation. Results The anionic monomer AMPS restrained polymer chain“dehydration”and improved its temperature resistance performance, on account of AMPS having a sulfoacid group, and it can promote the formation of stronger hydrogen bonds between polymer chain and water. Since the nonionic monomer NVP has a rigidly ring-shaped structure, it can improve polymer chain curl resistance property and avert its excessive curl, and enhance the temperature resistance performance of the polymer. In addition, the cationic monomer DADMAC is easy to attract the carboxylate group, which causes the polymer chain to curl more easily and reduces its temperature resistance. Conclusion sThe groups that can both form stronger hydrogen bond strength with water and the ring-shaped monomers with curl resistance ability are more conducive to improving temperature resistance of partially hydrolyzed polyacrylamide.
Key words:  molecular simulation  temperature resistance  hydrogen bond  gyration radius  diffusion coefficient  radial distribution function