引用本文:张雯琴,李长俊,贾文龙,王国云. 混氢天然气对流量计安装条件的适应性分析[J]. 石油与天然气化工, 2023, 52(6): 98-103, 109.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1076次   下载 365 本文二维码信息
码上扫一扫!
分享到: 微信 更多
混氢天然气对流量计安装条件的适应性分析
张雯琴1,李长俊1,2,贾文龙1,2,王国云1
1.西南石油大学石油与天然气工程学院;2.西南石油大学油气储运专业CNPC重点实验室
摘要:
目的 将氢气混入天然气中后会改变流体的性质和流动状态,从而影响流量计的计量准确度,采用ANSYS Fluent模拟弯头后混氢天然气的速度分布,分析现行的孔板流量计和超声流量计安装条件标准是否适用于混氢天然气管道。方法 模拟单90°弯头和双90°弯头后混氢天然气的速度场,分析现行标准中规定的流量计安装位置是否能使混氢天然气速度达到对称分布,从而说明是否需要延长现行标准中规定的弯头后流量计安装位置前直管段长度。结果 ①在单90°弯头后44D和50D截面处,掺氢量(摩尔分数,下同)为10%~30%时,气体流速未恢复到对称速度分布;②在双90°弯头后44D截面和50D截面处,掺氢量为10%时,气体流速已恢复到对称速度分布,掺氢量为20%~30%时的流速未恢复到对称速度分布;③在双90°弯头后30D截面处,掺氢量为10%时的流速未恢复到对称速度分布。结论 ①对于混氢天然气,应适当延长现行标准中规定的单弯头后流量计前直管段长度;②当掺氢量达到20%~30%时,应适当延长双弯头后流量计前直管段长度;③当掺氢量达到10%且孔板孔径比减小时,应适当延长孔板流量计前直管段长度。 
关键词:  混氢天然气  弯头  对称速度分布  流量计  安装条件  仿真 
DOI:10.3969/j.issn.1007-3426.2023.06.015
分类号:
基金项目:国家自然科学基金项目“X70/X80钢掺氢天然气输送管道氢脆失效机理及安全服役能力研究”(52074238);四川省自然科学基金面上项目“高压掺氢天然气输送管道泄放自燃机制及防控措施研究”(2022NSFSC0235)
Adaptability analysis of hydrogen-mixed natural gas to flowmeter installation conditions
Zhang Wenqin1, Li Changjun1,2, Jia Wenlong1,2, Wang Guoyun1
1. School of Petroleum and Natural Gas Engineering of Southwest Petroleum University, Chengdu, Sichuan, China;2. CNPC Key Laboratory of Oil and Gas Storage and Transportation Major, Chengdu, Sichuan, China
Abstract:
Objective Mixing hydrogen into natural gas will change the properties and flow state of the fluid, thus affecting the metering accuracy of the flowmeter. ANSYS Fluent was used to simulate the velocity distribution of hydrogen-mixed natural gas after bending pipe, and analyze that whether the existing installation conditions of orifice flowmeter and ultrasonic flowmeter are suitable for hydrogen-mixed natural gas pipeline. Methods Simulating the velocity field of hydrogen-mixed natural gas after single 90° bending pipe and double 90° bending pipe, and comparing the velocity distribution of hydrogen-mixed natural gas with different hydrogen content on the pipeline center line and some sections after the bending pipe to analyze whether the installation position of the flowmeter specified in the current standard achieves symmetrical velocity distribution for hydrogen-mixed natural gas, and to determine whether the length of the front straight pipe section of the installation position of the elbow back flowmeter stipulated in the current standard needs to be extended. Results (1) At the 44D and 50D sections after a single 90° bending pipe, the H2 molar fraction with 10%-30% H2 did not return to the symmetrical velocity distribution; (2) At the 44D section and 50D section after the double 90° bending pipe, the flow velocity with 10% H2 has returned to the symmetrical velocity distribution, while the flow velocity with 20%-30% H2 has not returned to the symmetrical velocity distribution; (3) At the 30D section after the double 90° bending pipe, the velocity with 10% H2 did not return to the symmetrical velocity distribution. Conclusion s(1) For hydrogen-mixed natural gas, the length of the straight front section of the single bending pipe rear flowmeter stipulated in the current standard should be appropriately extended; (2) For 20%-30% H2, the length of the straight pipe section in front of the flowmeter after the double bending pipe should be appropriately extended; (3) When the orifice aperture ratio decreases, the length of the straight pipe section in front of the orifice flowmeter with 10% H2 should be appropriately extended.
Key words:  hydrogen-mixed natural gas  bending pipe  symmetrical velocity distribution  flowmeter  installation condition  simulation