引用本文:王成,吴伟,奚亮,李海明,王福江,张鹏. 废润滑油加氢催化剂失活机理研究[J]. 石油与天然气化工, 2024, 53(2): 9-14, 27.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 845次   下载 338 本文二维码信息
码上扫一扫!
分享到: 微信 更多
废润滑油加氢催化剂失活机理研究
王成1,吴伟1,奚亮1,李海明1,王福江2,张鹏2
1.新疆寰球工程公司;2.中国科学院山西煤炭化学研究所
摘要:
目的 研究废润滑油加氢催化剂失活机理。方法 以NiMo/γ-Al2O3催化剂为研究对象,对加氢前后的催化剂和油品进行表征分析,从而找出催化剂失活的原因。结果 该催化剂的初始加氢活性很好,对硫(S)、氮(N)及氯(Cl)3种杂元素的脱除率可分别达到83.6%、81.7%和99.7%。但随着反应的进行,从第4周起,催化剂活性下降严重。对反应前后的催化剂进行表征发现,反应后催化剂比表面积和孔容大幅下降,且反应后催化剂成分中硅含量显著增多。结论 造成催化剂活性下降的原因并不是活性金属纳米颗粒的流失,也不是催化剂微观结构的破损,而是随着加氢反应的进行,一方面,油品中的硅加氢后沉积在催化剂表面,致使活性位点被覆盖而无法与反应物接触;另一方面,在固定床管路中堆积的硅限制了传质传热效率,降低了反应活性。 
关键词:  废润滑油  加氢  失活  硅中毒  Ni-Mo催化剂 
DOI:10.3969/j.issn.1007-3426.2024.02.002
分类号:
基金项目:国家自然科学基金“Ni/ZnMOx复合脱硫剂设计、制备及其在焦炉煤气深度脱硫中的应用研究”(22072173);国家自然科学基金“低甲烷化Ni/ZnO催化剂的可控合成及其深度脱除焦炉煤气中硫化物的机理研究”(21603256);国家自然科学基金“煤基环烷烃润滑油的合成与摩擦学特性研究”(U1910202);山西省重点研发计划“高品质的环烷烃润滑基础油制备技术”(202102090301005);师市重大科技揭榜挂帅项目“生物可降解塑料PBS关键技术的研究开发与示范”(2022JB02)
Study on the deactivation mechanism of waste lubricating oil hydrogenation catalyst
WANG Cheng1, WU Wei1, XI Liang1, LI Haiming1, WANG Fujiang2, ZHANG Peng2
1. Xinjiang Huanqiu Engineering Company, Karamay, Xinjiang, China;2. Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, China
Abstract:
Objective The aim is to study the deactivation mechanism of waste lubricating oil hydrogenation catalyst. Methods Taking NiMo/γ-Al2O3 catalyst as the research object, the catalyst and oil before and after hydrogenation were characterized and analyzed, so as to find out the cause of catalyst deactivation. Results The catalyst showed superior initial hydrogenation activity, and the removal rates of sulfur(S), nitrogen(N) and chlorine (Cl) could reach 83.6%, 81.7%, and 99.7%, respectively. However, with the progress of the reaction, the activity of the catalyst decreased seriously from the 4th week. The characterization of the catalyst before and after the reaction showed that the specific surface area and pore volume of the catalyst decreased significantly after the reaction, and the silicon content in the catalyst composition increased significantly after the reaction. Conclusion sThe reason for the decrease of catalyst activity was neither the loss of active metal nanoparticles, nor the damage of catalysts microstructure, but with the hydrogenation reaction, the silicon in the oil was gradually deposited on the catalyst surface after hydrogenation, resulting in the active site being covered and unable to contact with the reactants. On the other hand, the accumulation of silicon in the fixed bed pipeline limited the mass transfer and heat transfer efficiency, and reduced the reactivity.
Key words:  waste lubricating oil  hydrogenation  deactivation  silicon poisoning  Ni-Mo catalyst