引用本文:王秀民,崔健鹏,王志坤,孙霜青. 耐温耐盐CO2响应型叔胺泡沫的性能及响应机理[J]. 石油与天然气化工, 2024, 53(4): 73-78.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 735次   下载 193 本文二维码信息
码上扫一扫!
分享到: 微信 更多
耐温耐盐CO2响应型叔胺泡沫的性能及响应机理
王秀民,崔健鹏,王志坤,孙霜青
中国石油大学(华东)材料科学与工程学院
摘要:
目的 解决传统泡沫过于稳定,消泡困难等问题。方法 采用N-十二烷基-1,3-丙二胺与耐温耐盐型阴离子表面活性剂复配,制备一种CO2响应型耐温耐盐复配泡沫体系,并采用分子模拟探究了复配泡沫的稳定性和响应机理。结果 N-十二烷基-1,3-丙二胺具有良好的质子化性能和耐盐性能,但其耐温性能较差,且不具备响应性能。将其与十二烷基硫酸钠(SDS)和十二烷基磺酸钠复配后,高温下起泡速度提高了40%,泡沫存在时间达到复配前的3.17倍,耐温性显著提升,且具有良好的CO2响应性能。分子模拟研究发现,通入CO2后,液膜内SDS中含S原子基团与C12N(CH3)N(CH3)2中带正电荷的N原子基团相结合,从而失去表面活性,导致泡沫的稳定性变差,这也是响应消泡的原因。结论 该复配体系具有良好的耐温耐盐性能和响应性能,能够在苛刻环境下完成泡沫排水采气后实现响应消泡,具有广阔的应用前景。
关键词:  CO2响应型泡沫  表面活性剂  耐温耐盐  分子模拟
DOI:10.3969/j.issn.1007-3426.2024.04.010
分类号:
基金项目:国家自然科学基金面上项目“新型CO2响应型耐温抗盐泡排体系的设计、作用机理和应用研究”(51874331)
Performance and response mechanism of CO2 responsive tertiary amine foam with temperature and salt tolerance
Xiumin WANG, Jianpeng CUI, Zhikun WANG, Shuangqing SUN
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, China
Abstract:
Objective In order to solve the problems such as too stable traditional foam and difficulty in defoaming.Method Using N-dodecyl-1,3-propanediamine and temperature and salt tolerant anionic surfactant to prepare a CO2 responsive temperature and salt tolerance composite foam system, and uses molecular simulation to explore the stability and response mechanism of the composite foam. Results Results show that N-dodecyl-1,3-propanediamine has good protonation and salt tolerance properties. However, its temperature tolerance is poor, and it does not have response performance. After compounding with sodium dodecyl sulfate (SDS) and sodium dodecyl sulfate, the foaming speed at high temperature is increased by 40%, the foam duration is 3.17 times longer than that before compounding, the temperature resistance is significantly improved, and the foam is defoamed rapidly within a short period after passing CO2. Molecular simulation studies reveal that the S atomic groups contained in SDS will combine with the positively charged N atomic groups in C12N(CH3)N(CH3)2 and lose surface activity, resulting in poor stability of the foam, which is also responsible for the responsive defoaming. Conclusion The composite system has good temperature and salt resistance and responsiveness, and can realize responsive defoaming after foam drainage and gas production in harsh environments which has broad application prospects.
Key words:  CO2 responsive foam  surfactant  temperature and salt tolerance  molecular simulation