引用本文:惠波,赵博超,杨尚儒,周长静,马占国,肖元相,等. CO2增能压裂不同生产阶段裂缝内CO2滞留碳埋存[J]. 石油与天然气化工, 2024, 53(5): 84-92.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 458次   下载 355 本文二维码信息
码上扫一扫!
分享到: 微信 更多
CO2增能压裂不同生产阶段裂缝内CO2滞留碳埋存
惠波,赵博超,杨尚儒,周长静,马占国,肖元相,苏煜彬,章思鹏,赵金省
1.中国石油长庆油田分公司油气工艺研究院;2.低渗透油气田勘探开发国家工程实验室;3.中国石油长庆油田分公司天然气评价项目部;4.中国石油西部钻探工程有限公司;5.西安石油大学石油工程学院
摘要:
目的 目前,碳埋存技术主要有地质构造埋存、残余气体埋存、溶解埋存及矿物埋存,随着CO2压裂相关技术的应用,有必要针对增能压裂后CO2的埋存机理及其主控因素开展深入研究。方法 通过正交实验法,基于影响裂缝内孔隙空间和导流能力的因素,研究支撑剂(石英砂和陶粒)在不同铺砂浓度(5.0 kg/m2、7.5 kg/m2和10.0 kg/m2)下施加闭合压力受不同返排率影响的裂缝滞留碳埋存的情况,分析不同因素对裂缝滞留碳埋存影响的最优值。结果 CO2埋存主要是超临界状态下的埋存,CO2处于超临界状态时,埋存率在80%以上;随着地层压力下降,埋存率急速降低,在压力降至6 MPa时,埋存率仅剩40%左右。埋存率的影响因素由大到小依次为闭合压力>返排率>支撑剂类型>铺砂浓度。主控因素是闭合压力,随着闭合压力的增加,埋存率逐渐降低。结论 解决了对CO2增能压裂裂缝内CO2滞留碳埋存认知不清的问题,明确了4种压裂裂缝相关参数对CO2埋存的影响,在进行CO2增能压裂相关设计时,可依据实验结果对埋存进行预测。
关键词:  增能压裂  CO2  支撑剂  闭合压力  封存
DOI:10.3969/j.issn.1007-3426.2024.05.010
分类号:
基金项目:国家自然科学基金“致密砂岩油藏CO2吞吐多尺度流、固物性变化机理及对吞吐效果的影响”(52174031); 陕西省自然科学基础研究计划“致密砂岩油藏CO2吞吐效果微纳尺度主控因素研究”(2021JM-411); 陕西高校青年创新团队
CO2 retention and carbon storage in fractures at different production stages of CO2 energized fracturing
Bo HUI1,2, Bochao ZHAO3, Shangru YANG1,2, Changjing ZHOU1,2, Zhan'guo MA1,2, Yuanxiang XIAO1,2, Yubin SU1,2, Sipeng ZHANG4, Jinsheng ZHAO5
1.Oil and Gas Technology Research Institute of PetroChina Changqing Oilfield Company, Xi'an, Shaanxi, China;2.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi'an, Shaanxi, China;3.Natural Gas Evaluation Project Department of Changqing Oilfield Branch, Qingyang, Gansu, China;4.CNPC XIBU Drilling Engineering Company Limited, Urumqi, Xinjiang, China;5.School of Petroleum Engineering, Xi’an Shiyou University, Xi'an, Shaanxi, China
Abstract:
Objective At present, the carbon storage technology mainly consists of geological structure storage, residual gas storage, dissolution storage and mineral storage. With the application of CO2 fracturing related technologies, It is necessary to carry out in-depth research on the mechanism and main controlling factors of CO2 storage after energized fracturing. Methods According to the factors affecting the pore space and conductivity in fractures, the optimal values of the influence of different factors on fracture retention carbon storage were selected by proppant (quartz sand and ceramsite) under different sand spreading concentrations (5.0 kg/m2, 7.5 kg/m2 and 10.0 kg/m2) and the effects of different factors on fracture retention carbon storage were analyzed by orthogonal experimental method. Results CO2 storage is mainly in the supercritical state; the storage rate of CO2 is more than 80% when in the supercritical state. The storage rate decreases rapidly as the formation pressure continues to decline, and the storage rate is only about 40% when the pressure drops to 6 MPa. The factors affecting the storage rate include closing pressure, flowback rate, proppant type, and sand spreading concentration, and the influencing order from large to small is closing pressure > flowback rate > proppant type > sand spreading concentration. The main controlling factor is the closing pressure, and the storage rate gradually decreases with the increase of the closing pressure. Conclusion The problem of unclear understanding of CO2 storage carbon in CO2 energized fracturing fractures was solved, and the influence of four fracturing fracture-related parameters on CO2 storage was clarified. While in the design of CO2 energized fracturing, CO2 storage can be predicted based on experimental results.
Key words:  energized fracturing  CO2  proppant  closing pressure  storage