引用本文:李建伟,陈冲,王丹,姚卫国,张三莉. 甲烷二氧化碳重整热力学分析[J]. 石油与天然气化工, 2015, 44(3): 60-64.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1993次   下载 1186 本文二维码信息
码上扫一扫!
分享到: 微信 更多
甲烷二氧化碳重整热力学分析
李建伟,陈冲,王丹,姚卫国,张三莉
西安科技大学化学与化工学院
摘要:
为了优化反应条件及提高催化剂的反应效率,采用平衡常数法对甲烷二氧化碳重整制合成气进行了热力学分析,计算出该反应发生的最低可行温度为914 K。研究了反应温度、压力及反应原料进气组成对重整特性的影响。结果 表明,温度在1 123 K和常压下,CH4和CO2的转化率可分别达到94.47%和97.31%,且温度升高有利于转化率的提高, 而压力升高却不利于反应正向进行。随着原料气中n(CH4)/n(CO2)比值的增加,CH4和CO2转化率呈现单调但相反的变化趋势,当n(CH4)/n(CO2)=1.2时,CO2的转化率可达99.29%,n(H2)/n(CO)为0.99。O2含量增加,使CH4和CO2转化率分别升高和降低,且使n(H2)/n(CO)的值增加; 当n(CH4)∶ n(CO2)∶n(O2)=1.2∶1∶0.575时,能使反应实现自热。 
关键词:  平衡常数  重整  Aspen Plus  热力学  自热 
DOI:10.3969/j.issn.1007-3426.2015.03.013
分类号:TE624.3
基金项目:
Thermodynamic analysis of methane reforming with carbon dioxide
Li Jianwei, Chen Chong, Wang Dan, Yao Weiguo, Zhang Sanli
(College of Chemistry and Chemical Engineering, Xi`an University of Science and Technology, Xi'an 710054, China)
Abstract:
To optimize reaction conditions and improve the reaction efficiency of catalyst, an equilibrium constant method was applied to study the thermodynamic influences of operating parameters, such as reaction temperature, pressure and feed inlet composition, on the reforming properties. The minimum feasibility temperature of the reaction was calculated to be 914 K. The results showed that the methane conversion increased with temperature and decreased with pressure. At 1 123 K,the conversions of CH4 and CO2 achieved 94.47%and 97.31% respectively. When the molar ratio of CH4 and CO2 increased, the conversion of CH4 and CO2 appeared a drab but opposite change tendency, when molar ratio of CH4 and CO2 is 1.2, CO2 conversion rate reached 99.29% and molar ratio of H2 and CO was 0.99. By the introduction of oxygen, the conversion of CH4 increased, but that of CO2 reduced, and the molar ratio of H2 and CO increased. When the molar ratio of CH4, CO2 and O2 was 1.2∶1∶0.575, auto-thermal reaction could be realized.
Key words:  equilibrium constant  reforming  Aspen Plus  thermodynamics  auto-thermal