引用本文:赵冠熹,何太碧,李明,韩锐,孙宇恒,顾涵. 基于正交试验的Ⅲ型储氢气瓶内衬结构多因素疲劳性能优化[J]. 石油与天然气化工, 2022, 51(6): 41-49.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 660次   下载 450 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于正交试验的Ⅲ型储氢气瓶内衬结构多因素疲劳性能优化
赵冠熹1,何太碧2,李明3,韩锐1,孙宇恒2,顾涵1
1.西华大学材料科学与工程学院;2.西华大学汽车与交通学院 ;3.中材科技(成都)有限公司
摘要:
目的 探究铝合金内衬结构参数对Ⅲ型储氢气瓶的整体疲劳性能影响,得到能提高气瓶使用长时性的内衬优化设计方案。方法 基于正交试验结合数值模拟,采用Brown-Miller算法计算复合材料气瓶疲劳寿命。通过相关性分析,综合评估筒身壁厚、长径比和封头椭球比对其疲劳性能的影响,明确筒身壁厚为主要影响因素。基于Goodman平均应力修正方程,分析内衬应力幅随壁厚增加时的变化。并通过常温压力循环试验对优化设计方案进行验证。结果 气瓶实际疲劳寿命与模拟结果高度一致,最终循环次数与模拟结果相差5.7%。气瓶疲劳失效位置出现在内衬筒身段,铝合金内衬疲劳失效先于纤维缠绕层。结论 优化后的复合材料气瓶较标准要求的疲劳寿命提升44.7%,通过正交试验法对Ⅲ型储氢气瓶内衬结构参数的优化是可行的。 
关键词:  Ⅲ型储氢气瓶  疲劳寿命  正交试验  应力幅  常温压力循环试验
DOI:10.3969/j.issn.1007-3426.2022.06.007
分类号:
基金项目:四川省科学技术厅项目“加氢站用高压储氢罐研发”(2020ZDZX0029);四川省科技创新(苗子工程)培育项目“基于玄武岩纤维缠绕增强的35 MPa储氢气瓶的制备与数值模拟”(2022052);成都市科技人才创新创业项目(2021-RC03-00024-CG)
Multi-factor fatigue performance optimization of type Ⅲ hydrogen cylinder lining structure based on orthogonal test
Zhao Guanxi1, He Taibi2, Li Ming3, Han Rui1, Sun Yuheng2, Gu Han1
1. School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, China;2. School of Automobile & Transportation, Xihua University, Chengdu, Sichuan, China;3. Sinoma Science & Technology(Chengdu) Co., Ltd., Chengdu, Sichuan, China
Abstract:
Objective This study aims to investigate the influences of aluminum alloy lining structure parameters on the overall fatigue performance of type Ⅲ hydrogen cylinder,and obtain the optimal design scheme of lining which can improve the long-term performance of gas cylinder. Methods Based on orthogonal test and numerical simulation, the fatigue life of composite material gas cylinder is calculated by Brown-Miller algorithm. Through correlation analysis, the influences of cylinder wall thickness, length-diameter ratio and head ellipsoid ratio on fatigue performance are comprehensively evaluated,and the main factor is confirmed to be cylinder wall thickness. Based on Goodman average stress correction equation, the variation of lining stress amplitude with the increase of wall thickness is analyzed. The optimal design is verified by the normal temperature pressure cycle test. Results The actual fatigue life of cylinders is in good agreement with the simulation results, and the final cycle times are 5.7%, which is different from the simulation results. The fatigue failure position of gas cylinder appears in the lining cylinder body,and the fatigue failure of aluminum alloy lining is earlier than that of fiber winding layer. Conclusion sThe fatigue life of the optimized composite material gas cylinder is 44.7% longer than that of the standard. It is feasible to optimize the lining structure parameters of type III hydrogen cylinder by orthogonal test.
Key words:  type Ⅲ hydrogen cylinder  fatigue life  orthogonal test  stress amplitude  normal temperature pressure cycle test