引用本文:蔡良骏,严潇枭,任嗣利,刘洪霞. 新型多结纳米光催化剂的制备及在光解水制氢中的性能研究[J]. 石油与天然气化工, 2024, 53(2): 55-61, 70.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 860次   下载 339 本文二维码信息
码上扫一扫!
分享到: 微信 更多
新型多结纳米光催化剂的制备及在光解水制氢中的性能研究
蔡良骏1,2,严潇枭3,任嗣利1,2,刘洪霞1,2
1.矿冶环境污染防控江西省重点实验室;2. 江西理工大学资源与环境工程学院 ;3. 江西省环境工程职业学院
摘要:
目的 在纳米光催化制氢反应中,传统单p-n 结催化剂受限于禁带宽度,仅能吸收太阳光谱特定区域的光子,对太阳能的利用效率不高。为提高催化剂对太阳能的利用效率,研究制备了一种高活性的光解纯水催化剂。方法 受多结太阳能电池的启发,采用简单的浸渍法,将禁带宽度不同的半导体材料p-n结按照禁带宽度由低向高的叠加连接,制得一种新型多结纳米光催化剂,并用XRD、XPS、TEM技术对催化剂的结构进行表征。结果 多结纳米光催化剂进行光解纯水制氢反应3 h后,产氢量为15.53 μmol,是传统单p-n结催化剂的93倍。结论 该结果为合成更稳定的多结纳米光催化剂,实现高效的太阳能转换提供了新的方向和思路。 
关键词:  光催化剂  双p-n结  隧穿结  光解纯水  制氢 
DOI:10.3969/j.issn.1007-3426.2024.02.009
分类号:
基金项目:国家自然科学基金项目(22202090);江西省教育厅项目(GJJ200880);江西省科技厅项目(20232BAB213013) 
Preparation of novel multi-junction nanophotocatalyst and its performance in photolysis of water to hydrogen
CAI Liangjun1,2, YAN Xiaoxiao3, REN Sili1,2, LIU Hongxia1,2
1. Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China;2. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China;3. Jiangxi Environmental Engineering Vocational College, Ganzhou, Jiangxi, China
Abstract:
Objective In the nano photocatalytic hydrogen production reaction, traditional single p-n junction catalysts are limited by the bandgap width and can only absorb photons in specific areas of the solar spectrum, resulting in low solar energy utilization efficiency. To increase the utilization efficiency of solar energy by catalysts, a high activity photocatalytic pure water catalyst was prepared. Methods Taking inspiration from multi-junction solar cells, this paper adopted a simple impregnation method to superimpose p-n junctions of semiconductor materials with different bandgap widths from low to high in order to prepare a new type of multi-junction nanophotocatalyst. The structure of the catalyst was characterized by XRD, XPS, and TEM. Results After 3 h of photolysis of pure water to hydrogen production with the multi-junction nanophotocatalyst, the hydrogen production was 15.53 μmol, which was 93 times that of the traditional single p-n junction catalyst. Conclusion The results provide a new direction and new idea for the synthesis of more stable multi-junction nanophotocatalysts to achieve efficient solar energy conversion.
Key words:  photocatalyst  double p-n junction  tunneling junctions  photolysis of pure water  hydrogen production